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Damping using an instability of a fluid film in contact with a vibrating structure is

investigated. Waves induced in the fluid film are the source of the added damping.

A model based on the theory of Faraday instability is applied to a clamped circular plate

covered by a fluid film. It is shown that this original technique can provide a significant

damping, as with viscoelastic or porous material treatments. It is related to the

amplitude of the waves which is a nonlinear function of the plate acceleration.

Theoretical and experimental results are compared. The model overestimates the added

damping: it is four times greater than the measured one.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper examines a method to reduce the vibration and therefore the emitted noise of a structure by means of a fluid
film in the low frequency range. The usual techniques for noise and vibration reduction from a structure use a viscoelastic
layer bonded onto the structure [1]. In this case, the dissipation is proportional to the loss factor of the material and to the
flexural strain energy of the viscoelastic layer. To be efficient, this technique requires the use of a thick layer. Its thickness,
and therefore the mass adding, can be reduced by using a light and stiff constraining sheet that increases the strain energy
in the dissipating layer. Optimal partial covering may also be used to reduce the added mass [2]. These techniques are
limited by viscoelastic properties that depend on frequency and temperature [3]. Designed primarily for sound absorbing,
porous materials such as polymer foam may also add significant damping when mounted onto a structure [4–6]. To
improve the efficiency of passive treatments, active control techniques have also been developed [7,8] but require more
sophisticated set up. Moreover, their robustness has to be carefully demonstrated.

In this paper, damping added by a fluid film in contact with a structure is investigated (Fig. 1). When the normal
acceleration of the structure is strong enough, stationary waves appear in the fluid film (Fig. 2). This phenomenon is called
Faraday instability [9,10]. In case of a finite area of the fluid–air interface, the boundary conditions select countable
wavelengths and several stationary mode shapes are solution of the problem [11]. The mode shape which has the greater
amplification coefficient appears [12,13]. In case of an infinite area, this amplification coefficient will select the shape of the
free surface among elementary cell patterns (roll, hexagon or square) (Fig. 2). These elementary cells can be considered as
oscillators distributed over the surface of the structure [14], which damping depends on fluid flow in a cell and on the
viscosity of the fluid. Moreover, the relation between the wave amplitude and the driving acceleration of the plate is
nonlinear: it is necessary to determine the acceleration threshold for waves to appear and their amplitude at saturation
[15,11]. Note that for high acceleration level, ejection of droplets can be observed [16]. This paper focuses on the added
dissipation to the structure by the Faraday instability, using the thinnest fluid layer without droplet ejections. To the
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Fig. 1. Oscillation of a fluid film on a vibrating plate, with wðx; y; tÞ the transverse displacement of a point P of the plate (coordinates in the plane ðx; yÞ), t

the time, h the water level of the fluid film at rest and xðx; y; tÞ the amplitude of the waves above the point P.

Fig. 2. Stationary waves at the fluid–air interface (top view of the plate). Driving acceleration Wað0;0Þ: 13:8 m s�2.
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author’s knowledge, this technique aimed at reducing the vibration using the Faraday instability has not been previously
presented.

In a first part (Section 2), the modelling of the method of calculating the added damping is detailed. To this end, a
particular geometrical configuration is chosen: a circular plate clamped at its edge.

In Section 3, the corresponding experiment is designed in order to measure the added damping of the first mode of the
plate. This highlights the nonlinear behaviour of the instability of the fluid film and the influence of the parameters
governing the phenomenon.

The results of the model are compared with those obtained by the experiment in Section 4.
2. Model

2.1. From local to global dissipation

This section details how to calculate the global dissipation added on the structure as a function of the driving
acceleration and for a given mode shape of the plate. Indeed, the modal dissipation is a function of the area where the
instability appears and of the nonlinear relation between the amplitude of the waves and the local acceleration.

In the present paper, the first mode of a circular clamped plate of diameter d is considered. Its mode shape is given by [17]

fðr; yÞ ¼
I0ðb01d=2ÞJ0ðb01rÞ � J0ðb01d=2ÞI0ðb01rÞ

I0ðb01d=2ÞJ0ð0Þ � J0ðb01d=2ÞI0ð0Þ
, (1)
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with r the distance of the point to the centre of the plate, I0 the modified Bessel function, J0 the Bessel function and
b01 ¼ 1:0152p=d. This mode shape is normalized so that fð0;0Þ ¼ 1.

The modal damping ratio of the plate is given as a function of modal parameters,

zap ¼
cap

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpmpf

q , (2)

where cap is the damping coefficient added on the plate, kp the modal stiffness of the plate and mpf the modal mass of the
plate loaded by the fluid film. These three terms cap, kp and mpf are calculated in the two following sections.

2.1.1. Modal stiffness and modal mass

The strain energy of the plate is calculated by integrating the local strain energy over the plate. This expression gives the
modal stiffness kp [17]:

1

2
kpðfð0;0ÞÞ2 ¼

1

2
D

Z 2p

y¼0

Z R

r¼0
f;rr þ

1

r
f;r

� �2

� 2ð1� npÞ
f;rrf;r

r

 !
r dr dy, (3)

with D the stiffness of the plate defined by

D ¼ Ee3=ð2ð1� n2
pÞÞ, (4)

with E the Young modulus and np the Poisson’s ratio of the material, e the thickness of the plate. This modal stiffness does
not depend on the fluid film properties.

By the same approach, the modal mass of the plate mp is given by [17]

1

2
mpðfð0;0Þ2 ¼

1

2

Z 2p

y¼0

Z R

r¼0
rpefðr; yÞ2r dr dy, (5)

with

rpe ¼ rseþ rf h ¼ rseð1þ ~rÞ (6)

the equivalent mass per unit area of the system, based on rs the density of the aluminum, rf the density of the fluid and an
added mass due to the fluid layer. In this equation, the kinetic energy of the fluid due to the flow relative to the plate is
neglected. Assuming that rp is constant along the plate and that fð0;0Þ ¼ 1, Eq. (5) can be rewritten as

mp ¼ rpe

Z 2p

y¼0

Z R

r¼0
fðr; yÞ2r dr dy. (7)

The value of rs is given by fitting the first resonance frequency of the bare plate,

f 1 ¼
1:0152

2p
p2

ðd=2Þ2

ffiffiffiffiffiffiffiffi
D

rse

s
. (8)

2.1.2. Added damping coefficient

The added damping coefficient cap is determined considering the dissipated energy during one period of the plate
vibration [9,12,18–20],

Z 2p=oe

t¼0

1

2
cap _w

2
ð0;0; tÞdt ¼

Z 2p=oe

t¼0

1

2

Z 2p

y¼0

Z R

r¼0
ĉ

qhaðr; yÞ cosðof tÞ

qt

 !2

r dr dy

2
4

3
5dt, (9)

with wð0;0; tÞ ¼W sinðoetÞ the instantaneous transverse displacement of the centre of the plate, W the amplitude of the
displacement at this point, ĉ the local damping coefficient per unit area, aðr; yÞ ¼ Aðr;yÞ=h (Eq. (12)) the dimensionless
amplitude of the waves, Aðr; yÞ ¼ maxtðxðr; y; tÞÞ the amplitude of the waves at saturation (Fig. 2), xðr;y; tÞ the instantaneous
position of the free surface, of the circular frequency of the free surface waves due to the Faraday instability, oe the circular
frequency of excitation and t the time.

Taking into account the axisymmetry of the first mode shape, that of ¼ oe=2 and _wð0;0; tÞ ¼Woe sinðoetÞ, the
integration in time and in angle y gives

capW2 ¼ ĉh2p
Z R

r¼0
aðrÞ2r dr. (10)

The integration is made on the area where the instability appears. It is a disk of radius rd, so that for r4rd, aðrÞ ¼ 0.
Assuming that the amplitude of the waves does not depend on the acceleration of the other points of the plate (local
hypothesis), rd may be defined by

€wðrd; yÞ ¼ ~�cg, (11)

with ~�c the dimensionless acceleration threshold for the Faraday instability to appear and g the gravity.
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J.M. Génevaux et al. / Journal of Sound and Vibration 326 (2009) 150–160 153
For rord, a linear relation between a2 and ~� is accounted for as suggested in Ref. [11]: the amplitude of the waves at
saturation, when qA=qt ¼ 0, is an affine function of ~�,

a2 ¼ ~�Aof
� Bof

, (12)

where Aof
and Bof

are two parameters which will be determined experimentally in this paper (Section 3 and Fig. 7). Note
that ~�c is ~� for a ¼ 0 in Eq. (12):

~�c ¼
Bof

Aof

. (13)

Eq. (10) then reads

cap ¼
pĉh2

W2
Aof

g

Z rd

r¼0
~�ðrÞr dr � Bof

Z rd

r¼0
r dr

� �
, (14)

where the dimensionless acceleration ~�ðrÞ can be related to fðr; yÞ the normalized mode shape of the plate (Eq. (1)) by

~�ðrÞ ¼
Wo2

e

g
fðr; yÞ. (15)

2.2. Equivalent damping coefficient of a fluid cell

The aim of this section is to calculate the modal damping coefficient ĉ of the fluid per unit area, which is required to
calculate cap (Eq. (14)). It is given by

ĉðr; yÞ ¼ 2z0mfof , (16)

with mf the modal mass per unit area and z0 the damping ratio of the fluid. z0 can be related to the logarithmic decrement
as of free oscillations [17] by

z0 ¼
asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ a2
s

q , (17)

with as ¼ 2pdk [15]. Here d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n=of

q
is the thickness of the viscous layer for a fluid with a kinematic viscosity n solicited

at the circular frequency of , and k the wavenumber. This wavenumber is solution of [21]

o2
f ¼ gk tanhðkhÞ 1þ

sk2

rf g

 !
, (18)

with s the surface tension of the fluid–air interface.
The modal mass per unit area mf is

mf ¼
mf cell

ðl=2Þ2
, (19)

with mf cell the modal mass of one cell whose area is ðl=2Þ2, with l ¼ 2p=k the wavelength. Here, the first mode of a fluid
cell for a given pattern of the free surface is considered. Several patterns appear successively on the free surface with the
increase of the level of the acceleration [10]: roll, hexagon, then square. In this paper, the square pattern which is present
for high accelerations is chosen (Fig. 2). The modal shape can be defined according to a potential function for the flow: the
Reynolds is large enough ðRe ¼ 1:7� 106

Þ for the thickness of viscous boundary layer ðd ¼ 0:063 mmÞ to be smaller than the
fluid depth. Let us consider a fluid cell defined by a volume of incompressible fluid whose dimensions are l=2 in x and y
directions, and h in z direction. Symmetry arguments allow the use of a flow v relative to the plate associated to
Ff ðx; y; z; tÞ ¼ ff ðx; y; zÞgðtÞ, with gðtÞ a harmonic function and

ff ðx; y; zÞ ¼ bðr; yÞ cosðqð2x=l� 1ÞÞ cosðqð2y=l� 1ÞÞ coshð
ffiffiffi
2
p

q; z=lÞ, (20)

with b the amplitude of the potential function which depends on the position of the fluid cell (cylindrical coordinates r, y),
and ðx; y; zÞ the coordinates of a point into the cell. The velocity field v is given by

h
qff

qx
gðtÞ ¼ v � x; h

qff

qy
gðtÞ ¼ v � y; h

qff

qz
gðtÞ ¼ v � z. (21)

The boundary conditions at x ¼ l=2 and y ¼ l=2 give for the first mode of the fluid cell, q ¼ p.
The kinetic energy of the fluid in the cell is used to calculate mf cell:

1

2
mf cell

qaðr; yÞ cosðof tÞ

qt

 !2

¼
1

2
rf gðtÞ2

Z l

x¼0

Z l

y¼0

Z h

z¼0
ðf2

f ;x þ f2
f ;y þ f2

f ;zÞdx dy dz, (22)
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with ff ;x ¼ qf=qx. bðr; yÞ is derived from aðr; yÞ the amplitude of the waves, by equating the vertical velocity of a point of the
free surface ðz ¼ hÞ:

aðr; yÞ
q cosðof tÞ

qt
¼ gðtÞ

qff

qz
8t, (23)

and using Eq. (20) it gives

aðr; yÞ ¼ bðr; yÞ
2
ffiffiffi
2
p

p
l

sinhð
ffiffiffi
2
p

ph=lÞ, (24)

gðtÞ ¼ �of sinðof tÞ (25)

so that

bðr; yÞ ¼
aðr;yÞl

2
ffiffiffi
2
p

p sinhð
ffiffiffi
2
p

ph=lÞ
. (26)

Using Eq. (26), and integrating the second member of Eq. (22), the modal mass of the one degree of freedom system
associated to the fluid cell writes

mf cell ¼
rf l

3 ffiffiffi
2
p

256p

1� exp
�8

ffiffiffi
2
p

ph

l

 ! !
exp

4
ffiffiffi
2
p

ph

l

 !

cosh

ffiffiffi
2
p

ph

l

 !2

� 1

. (27)

The modal mass per unit area mf and the modal damping coefficient by unit area ĉ may be obtained with Eqs. (16) and (19).

3. Experimental results

The aim of this section is to determine experimentally the plate damping induced by the Faraday instability of the fluid
film. Because the system is nonlinear, all experimental quantities are referenced to the acceleration at the centre of
the plate, called driving acceleration, and denoted Wað0;0Þ. Four water levels and four values of the driving acceleration
are considered.

3.1. Experimental set-up

The geometrical configuration is presented in Fig. 3. A circular aluminum plate of diameter d ¼ 0:290 m is clamped. Its
characteristics are summarized in Tables 1 and 2. It is excited by a shaker connected to its centre via a force transducer
giving the excitation force F. An accelerometer of mass ma ¼ 0:0042 kg is bonded at 1 cm of the centre of the plate to get the
reference acceleration Wað0;0Þ ¼ o2

e W . A laser vibrometer is focused on the plate through the fluid film. The laser spot area
is of the order of 1 mm2.

The frequency range is set between 40 and 120 Hz to ensure Faraday instabilities for experimentally achievable
accelerations. The thickness of the fluid layer is chosen to be of the order of the wavelength: this ensures a total covering of
the plate and a small added mass.
Fig. 3. Experimental set-up.
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Table 1
Numerical inputs of the model.

Plate

Diameter of the plate (m) d 0.290

Thickness of the plate (m) e 0.001

Material of the plate Aluminum

Young’s Modulus (Pa) E 7� 1010

Poisson’s ratio np 0.3

Frequency of the first resonance of the bare plate (Hz) f 1 100

Frequency of excitation (Hz) f e 75

Fluid

Gravity ðm s�2Þ g 9.81

Fluid layer thickness (m) h 0.0046

Kinematic viscosity of water ðm2 s�1Þ n 10�6

Density of the fluid ðkg m�3Þ rf 1000

Wavelength of the free surface (m) l 0.0063

First amplitude of the wave coefficient Aof
[0.0135,0.0163]

Second amplitude of the wave coefficient Bof
[0.0111,0.0134]

Table 2
Numerical outputs of the model.

Loaded plate

Stiffness of the plate (N m) Eq. (4) D 8.82

Dimensionless added mass Eq. (30) ~r 0.88

Density of the plate with air loading ðkg m�3Þ Eq. (8) rs 5230

Modal stiffness ðNm�1Þ Eq. (3) kp 1.08105

Equivalent mass of the plate with fluid ðkg m�3Þ Eq. (6) rp 7215

Modal mass (kg) Eq. (7) mp 0.0875

Fluid

Threshold of instability ðm s�2Þ Eq. (13) ~�cg 8.04

Local damping ratio of the fluid Eq. (17) z0 14.5%

Modal mass of a fluid cell (kg) Eq. (27) mf cell 2:23� 10�6

Modal mass per unit area ðkg m�2Þ Eq. (19) mf 2:25� 10�1

Equivalent damping coefficient per unit area ðkg m�2s�1Þ Eq. (16) ĉ 9.69

Damping ratio added by the fluid Eq. (2) zap Fig. 6
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The frequency response functions are obtained using a step by step harmonic excitation for a constant acceleration
amplitude Wað0;0Þ.

3.2. Determination of the free surface velocity of the fluid

The signal given by the laser vibrometer is proportional to the apparent velocity of the plate d ~w=dt. It is a combination
of the plate and of the free surface velocities:

d ~wðr; y; tÞ
dt

¼
dwðr; y; tÞ

dt
�

c0

c1
� 1

� �
dðhþ xðr;y; tÞÞ

dt
, (28)

with wðr; y; tÞ the displacement of the plate at the point Pðr; yÞ, c0 the light velocity in the air, c1 the light velocity in the
fluid, hðr; y; tÞ the water level crossed by the beam. The time signal of the apparent speed of the plate (Fig. 4) exhibits a sub-
harmonic at oe=2. Their contributions can be easily identified because they are at different frequencies (see Fig. 4). To do
so, Eq. (28) is rewritten as

d ~wðr; y; tÞ
dt

¼ ~a1 cosðoet þ ~a2Þ þ ~a3 cos
oe

2
t þ ~a4

� �
. (29)

The parameters ~a1 and ~a2 are associated to the plate velocity, and the parameters ~a3 and ~a4 to the fluid interface
movement. They are determined using a nonlinear optimization. The position of the nodes of the free surface mode shape is
not stationary: ~a3 ¼ 0 if the laser beam focuses through a node, and is maximum if the laser beam focuses through an
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antinode. Indeed, for level of accelerations far higher than the threshold, second-order effects [22] induce a slow drift of the
positions of the antinode of the fluid–air interface. Thus, the time of acquisition must be long enough to contain
measurement on an antinode. The amplitude of the waves is then deduced from the greatest value of ~a3.
3.3. Influence of the driving acceleration and water levels

The experiments are performed with water to test the influence of the fluid level on the frequency response functions.
The water levels remain below 0.0133 m and above 0.004 m for all the experiments. Below this lower limit, the wetting
mechanism prevents the water from covering the whole plate. The ratio of added mass per unit area is

~r ¼
rf h

rse
. (30)
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Near the resonance frequency (75 Hz), stationary waves are observed on the free surface (Fig. 2). Their amplitude is higher
at the centre of the plate. This coincides with the maximum amplitude of the first mode shape. They appear as square
patterns within a circle at the centre of the plate. Their wavelength, which are consistent with capillarity waves on the
surface, increases as the frequency decreases.

To determine the acceleration threshold for Faraday instability, the frequency response function is measured for several
amplitudes of the driving acceleration for water levels from 0 to 0.0133 m. Nonlinear effects are observed (Fig. 5) when
increasing the amplitude of acceleration:
�
 the existence of a threshold for waves to appear,

�
 an increase in the area of the circular surface on which waves are present,

�
 a slight increase in the frequency resonance,

�
 a reduction of the amplitude of the peak (up to 13 dB).
In Fig. 5, the threshold is between 6 and 13 m s�2. It corresponds to a sharp increase in damping. Fig. 6 shows damping
ratio zpf which is estimated using the half-power method. The measured damping for this non-optimized configuration can
be half the value of the damping measured in the case of unconstrained-layer treatment, and is greater than the damping
added by foam or fibre layer. This increase is not observed for the bare plate (continuous line). The thinner the fluid layer,
the stronger the damping is.

4. Comparison between theoretical and experimental results

Comparison between theoretical and experimental values of the plate damping induced by the fluid film is now
evaluated. Water with the thinner thickness is used to induce the stronger damping. The numerical values of the
parameters of the model are given in Tables 1 and 2 for this configuration.

The added damping ratio depends on the local dissipation of the fluid layer and on the area of the instability area.
This local dissipation is a function of the relation between the local acceleration of the plate and of the wave amplitude

(Fig. 6). The relation between the wave amplitude and the motion of the plate is quantified by the coefficients Aof
and Bof

(Eq. (12)) which are identified on the experimental data by a least-squares regression method (Fig. 7). The uncertainties on
the position of the regression line are calculated with a confidence of 95%. Note that three points are not taken into
account: the noise on the signal and the low spatial stability of the waves do not allow a correct evaluation of the amplitude
of the waves for these three acceleration levels. In the following, above the threshold ~�c , the dimensionless amplitudes of
the waves lie in the following boundaries:

0:0135ð~�� 0:82Þoa2o0:0163ð~�� 0:82Þ. (31)

The wavelength l ¼ 0:004 m given by the model using s ¼ 0:072 N m�1, the surface tension of the fluid–air interface, is
near the measured experimental wavelength (0:00626 molo0:00634 m, Section 3.3). The experimental average value
l ¼ 0:0063 m is used in the model to evaluate the damping.
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Moreover, the equivalent damping coefficient cap added to the structure depends on the area on which the damping
occurs. The first mode shape of the plate induces a circular limit of instability of radius rd where, Waðrd; yÞ ¼ 8:04 m s�2.
The relationship between this radius and the acceleration in the centre of the plate is given by the mode shape of the plate
fðr; yÞ (Eq. (1)) and the instability threshold. The evolution of cap, as function of Wa at the centre of the plate, can then be
calculated taking into account the uncertainty of the amplitude of the waves (Eq. (31)). From the evolution of cap, the
damping ratio added by the fluid zap can be plotted (Fig. 8).

For the experimental point of view, the damping ratio added by the fluid can be deduced by the comparison of the
damping ratio observed with the fluid zpf and the damping ratio of the bare plate zp (Fig. 6). The damping ratio of the bare
plate is,

zp ¼
cp

2
ffiffiffiffiffiffiffiffiffiffiffiffi
kpmp

p , (32)

with cp the modal damping coefficient of the plate, mp the modal mass of the plate. With the fluid layer the damping ratio
is given by

zpf ¼
cp þ cap

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpmpf

q ¼
cp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpmpf

q þ zap. (33)
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By neglecting the kinetic energy of the waves compared to the kinetic energy of the loaded plate, the relation mpf ¼

mpð1þ ~rÞ gives

zpf ¼
cp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpmpð1þ ~rÞ

p þ zap. (34)

Thus, the experimental value of the added damping ratio is

zap ¼ zpf � zp
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~r
p . (35)

The comparison (Fig. 8) between experimental and theoretical values of zap shows that above the threshold the amplitude
of the theoretical damping is four times greater than the experimental damping.

The source of this discrepancy can be sought in the high sensitivity of the model to the amplitudes of the waves. The
relation between the wave amplitude and the acceleration has been determined assuming a locally reacting behaviour of
each fluid cell. This hypothesis is valid where the acceleration is uniform: this is the case in the vicinity of an antinode
(centre of the plate for the first mode). This assumption may not be valid where an acceleration gradient is present.
Moreover, in this transition region, the cell shape is no longer square (Fig. 2).

Nevertheless, note that the damping added by the fluid film is comparable to those obtained with viscoelastic or porous
material treatments [1,6].

5. Conclusion

Damping of a vibrating structure by means of a heavy fluid film subjected to Faraday instability has been studied. It is
shown that added damping may be significant. A model has highlighted the governing parameters: the acceleration
threshold and the amplitude of the waves, which depend on the frequency, on the viscosity and the fluid thickness of the
fluid and on the mode shape of the structure. The model takes into account that the dissipation does not act on the overall
structure. Experimental results have confirmed the tendencies of the predicted damping. Nevertheless, the model
overestimates the added damping: it is four times greater than the measured one. Further experiments are needed to
detect the sources of discrepancies: the Faraday instability threshold and the amplitude of the waves must be studied in
the case of non-uniform acceleration.
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